[PDF] Quantum Theory for Mathematicians by Brian C. Hall Book Free Download

0
939

Quantum Theory for Mathematicians

Download Quantum Theory for Mathematicians by Brian C. Hall Book is very useful for Mathematics Department students and also who are all having an interest to develop their knowledge in the field of Maths. put an effort to collect the various Maths Books for our beloved students and Researchers. This Book provides an clear examples on each and every topics covered in the contents of the book to provide an every user those who are read to develop their knowledge.

“Quantum Theory for Mathematicians by Brian C. Hall Book Free Download”

Quantum Theory for Mathematicians By Brian C. Hall
Quantum Theory for Mathematicians By Brian C. Hall

Book Details:

Category
Quantum Theory for Mathematicians
Language English
File Type PDF
PDF Pages 566
Author Brian C. Hall
File Size & Downloads Size 4.2 MB

Table Of Content:

1 The Experimental Origins of Quantum Mechanics 1
1.1 Is Light a Wave or a Particle? ……………. 1
1.2 Is an Electron a Wave or a Particle? ………… 7
1.3 Schr¨odinger and Heisenberg . . . . . . . . . . . . . . . . . 13
1.4 A Matter of Interpretation . . . . . . . . . . . . . . . . . . 14
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 A First Approach to Classical Mechanics 19
2.1 Motion in R1 . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Motion in Rn . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Systems of Particles . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Poisson Brackets and Hamiltonian Mechanics . . . . . . . 33
2.6 The Kepler Problem and the Runge–Lenz Vector . . . . . 41
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 A First Approach to Quantum Mechanics 53
3.1 Waves, Particles, and Probabilities . . . . . . . . . . . . . 53
3.2 A Few Words About Operators and Their Adjoints . . . . 55
3.3 Position and the Position Operator . . . . . . . . . . . . . 58
3.4 Momentum and the Momentum Operator . . . . . . . . . 59
3.5 The Position and Momentum Operators . . . . . . . . . . 62
3.6 Axioms of Quantum Mechanics: Operators
and Measurements . . . . . . . . . . . . . . . . . . . . . . 64
xi
xii Contents
3.7 Time-Evolution in Quantum Theory . . . . . . . . . . . . 70
3.8 The Heisenberg Picture . . . . . . . . . . . . . . . . . . . . 78
3.9 Example: A Particle in a Box . . . . . . . . . . . . . . . . 80
3.10 Quantum Mechanics for a Particle in Rn . . . . . . . . . . 82
3.11 Systems of Multiple Particles . . . . . . . . . . . . . . . . 84
3.12 Physics Notation . . . . . . . . . . . . . . . . . . . . . . . 85
3.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4 The Free Schr¨odinger Equation 91
4.1 Solution by Means of the Fourier Transform . . . . . . . . 92
4.2 Solution as a Convolution . . . . . . . . . . . . . . . . . . 94
4.3 Propagation of the Wave Packet: First Approach . . . . . 97
4.4 Propagation of the Wave Packet: Second Approach . . . . 100
4.5 Spread of the Wave Packet . . . . . . . . . . . . . . . . . 104
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5 A Particle in a Square Well 109
5.1 The Time-Independent Schr¨odinger Equation . . . . . . . 109
5.2 Domain Questions and the Matching Conditions . . . . . . 111
5.3 Finding Square-Integrable Solutions . . . . . . . . . . . . . 112
5.4 Tunneling and the Classically Forbidden Region . . . . . 118
5.5 Discrete and Continuous Spectrum . . . . . . . . . . . . . 119
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6 Perspectives on the Spectral Theorem 123
6.1 The Difficulties with the Infinite-Dimensional Case . . . . 123
6.2 The Goals of Spectral Theory . . . . . . . . . . . . . . . . 125
6.3 A Guide to Reading . . . . . . . . . . . . . . . . . . . . . . 126
6.4 The Position Operator . . . . . . . . . . . . . . . . . . . . 126
6.5 Multiplication Operators . . . . . . . . . . . . . . . . . . . 127
6.6 The Momentum Operator . . . . . . . . . . . . . . . . . . 127
7 The Spectral Theorem for Bounded Self-Adjoint
Operators: Statements 131
7.1 Elementary Properties of Bounded Operators . . . . . . . 131
7.2 Spectral Theorem for Bounded Self-Adjoint
Operators, I . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Spectral Theorem for Bounded Self-Adjoint
Operators, II . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8 The Spectral Theorem for Bounded Self-Adjoint
Operators: Proofs 153
8.1 Proof of the Spectral Theorem, First Version . . . . . . . . 153
Contents xiii
8.2 Proof of the Spectral Theorem, Second Version . . . . . . 162
8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9 Unbounded Self-Adjoint Operators 169
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.2 Adjoint and Closure of an Unbounded Operator . . . . . . 170
9.3 Elementary Properties of Adjoints and Closed
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.4 The Spectrum of an Unbounded Operator . . . . . . . . . 177
9.5 Conditions for Self-Adjointness and Essential
Self-Adjointness . . . . . . . . . . . . . . . . . . . . . . . . 179
9.6 A Counterexample . . . . . . . . . . . . . . . . . . . . . . 182
9.7 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.8 The Basic Operators of Quantum Mechanics . . . . . . . . 185
9.9 Sums of Self-Adjoint Operators . . . . . . . . . . . . . . . 190
9.10 Another Counterexample . . . . . . . . . . . . . . . . . . . 193
9.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10 The Spectral Theorem for Unbounded Self-Adjoint
Operators 201
10.1 Statements of the Spectral Theorem . . . . . . . . . . . . . 202
10.2 Stone’s Theorem and One-Parameter Unitary Groups . . . 207
10.3 The Spectral Theorem for Bounded Normal
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.4 Proof of the Spectral Theorem for Unbounded
Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . 220
10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11 The Harmonic Oscillator 227
11.1 The Role of the Harmonic Oscillator . . . . . . . . . . . . 227
11.2 The Algebraic Approach . . . . . . . . . . . . . . . . . . . 228
11.3 The Analytic Approach . . . . . . . . . . . . . . . . . . . . 232
11.4 Domain Conditions and Completeness . . . . . . . . . . . 233
11.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
12 The Uncertainty Principle 239
12.1 Uncertainty Principle, First Version . . . . . . . . . . . . . 241
12.2 A Counterexample . . . . . . . . . . . . . . . . . . . . . . 245
12.3 Uncertainty Principle, Second Version . . . . . . . . . . . . 246
12.4 Minimum Uncertainty States . . . . . . . . . . . . . . . . . 249
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
13 Quantization Schemes for Euclidean Space 255
13.1 Ordering Ambiguities . . . . . . . . . . . . . . . . . . . . . 255
13.2 Some Common Quantization Schemes . . . . . . . . . . . . 256
xiv Contents
13.3 The Weyl Quantization for R2n . . . . . . . . . . . . . . . 261
13.4 The “No Go” Theorem of Groenewold . . . . . . . . . . . 271
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
14 The Stone–von Neumann Theorem 279
14.1 A Heuristic Argument . . . . . . . . . . . . . . . . . . . . 279
14.2 The Exponentiated Commutation Relations . . . . . . . . 281
14.3 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 286
14.4 The Segal–Bargmann Space . . . . . . . . . . . . . . . . . 292
14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15 The WKB Approximation 305
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 305
15.2 The Old Quantum Theory and the Bohr–Sommerfeld
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.3 Classical and Semiclassical Approximations . . . . . . . . . 308
15.4 The WKB Approximation Away from the Turning
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
15.5 The Airy Function and the Connection Formulas . . . . . 315
15.6 A Rigorous Error Estimate . . . . . . . . . . . . . . . . . . 320
15.7 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . 328
15.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
16 Lie Groups, Lie Algebras, and Representations 333
16.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.2 Matrix Lie Groups . . . . . . . . . . . . . . . . . . . . . . 335
16.3 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.4 The Matrix Exponential . . . . . . . . . . . . . . . . . . . 339
16.5 The Lie Algebra of a Matrix Lie Group . . . . . . . . . . . 342
16.6 Relationships Between Lie Groups and Lie Algebras . . . . 344
16.7 Finite-Dimensional Representations of Lie Groups
and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . 350
16.8 New Representations from Old . . . . . . . . . . . . . . . . 358
16.9 Infinite-Dimensional Unitary Representations . . . . . . . 360
16.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
17 Angular Momentum and Spin 367
17.1 The Role of Angular Momentum
in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 367
17.2 The Angular Momentum Operators in R3 . . . . . . . . . 368
17.3 Angular Momentum from the Lie Algebra Point
of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
17.4 The Irreducible Representations of so(3) . . . . . . . . . . 370
17.5 The Irreducible Representations of SO(3) . . . . . . . . . . 375
17.6 Realizing the Representations Inside L2(S2) . . . . . . . . 376
Contents xv
17.7 Realizing the Representations Inside L2(R3) . . . . . . . . 380
17.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
17.9 Tensor Products of Representations: “Addition of
Angular Momentum” . . . . . . . . . . . . . . . . . . . . . 384
17.10 Vectors and Vector Operators . . . . . . . . . . . . . . . . 387
17.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18 Radial Potentials and the Hydrogen Atom 393
18.1 Radial Potentials . . . . . . . . . . . . . . . . . . . . . . . 393
18.2 The Hydrogen Atom: Preliminaries . . . . . . . . . . . . . 396
18.3 The Bound States of the Hydrogen Atom . . . . . . . . . . 397
18.4 The Runge–Lenz Vector in the Quantum Kepler
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
18.5 The Role of Spin . . . . . . . . . . . . . . . . . . . . . . . 409
18.6 Runge–Lenz Calculations . . . . . . . . . . . . . . . . . . . 410
18.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
19 Systems and Subsystems, Multiple Particles 419
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 419
19.2 Trace-Class and Hilbert–Schmidt Operators . . . . . . . . 421
19.3 Density Matrices: The General Notion
of the State of a Quantum System . . . . . . . . . . . . . . 422
19.4 Modified Axioms for Quantum Mechanics . . . . . . . . . 427
19.5 Composite Systems and the Tensor Product . . . . . . . . 429
19.6 Multiple Particles: Bosons and Fermions . . . . . . . . . . 433
19.7 “Statistics” and the Pauli Exclusion Principle . . . . . . . 435
19.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
20 The Path Integral Formulation of Quantum Mechanics 441
20.1 Trotter Product Formula . . . . . . . . . . . . . . . . . . . 442
20.2 Formal Derivation of the Feynman Path Integral . . . . . . 444
20.3 The Imaginary-Time Calculation . . . . . . . . . . . . . . 447
20.4 The Wiener Measure . . . . . . . . . . . . . . . . . . . . . 448
20.5 The Feynman–Kac Formula . . . . . . . . . . . . . . . . . 449
20.6 Path Integrals in Quantum Field Theory . . . . . . . . . . 451
20.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
21 Hamiltonian Mechanics on Manifolds 455
21.1 Calculus on Manifolds . . . . . . . . . . . . . . . . . . . . 455
21.2 Mechanics on Symplectic Manifolds . . . . . . . . . . . . . 459
21.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
22 Geometric Quantization on Euclidean Space 467
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 467
22.2 Prequantization . . . . . . . . . . . . . . . . . . . . . . . . 468
xvi Contents
22.3 Problems with Prequantization . . . . . . . . . . . . . . . 472
22.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 474
22.5 Quantization of Observables . . . . . . . . . . . . . . . . . 478
22.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
23 Geometric Quantization on Manifolds 483
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 483
23.2 Line Bundles and Connections . . . . . . . . . . . . . . . . 485
23.3 Prequantization . . . . . . . . . . . . . . . . . . . . . . . . 490
23.4 Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . 492
23.5 Quantization Without Half-Forms . . . . . . . . . . . . . . 495
23.6 Quantization with Half-Forms: The Real Case . . . . . . . 505
23.7 Quantization with Half-Forms: The Complex Case . . . . . 518
23.8 Pairing Maps . . . . . . . . . . . . . . . . . . . . . . . . . 521
23.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
A Review of Basic Material 527
A.1 Tensor Products of Vector Spaces . . . . . . . . . . . . . . 527
A.2 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . 529
A.3 Elementary Functional Analysis . . . . . . . . . . . . . . . 530
A.4 Hilbert Spaces and Operators on Them . . . . . .

“Quantum Theory for Mathematicians by Brian C. Hall Book PDF File”

“Free Download Quantum Theory for Mathematicians by Brian C. Hall Book PDF”

“How to Download PDF of Quantum Theory for Mathematicians by Brian C. Hall Book Free?”

DOWNLOAD

READ HERE  [PDF] Basics of Plasma Astrophysics By Claudio Chiuderi and Marco Velli Book Free Download

LEAVE A REPLY

Please enter your comment!
Please enter your name here